物质的第四态小说,物质的第四种状态英语课文

麦兜
麦兜 2024-04-22 03:54:02

物质状态的第4种状态

物质第四态等离子体(plasma)

所谓等离子体就是被激发电离气体,达到一定的电离度(x),气体处于导电状态,这种状态的电离气体就表现出集体行为,即电离气体中每一带电粒子的运动都会影响到其周围带电粒子,同时也受到其他带电粒子的约束。由于电离气体整体行为表现出电中性,也就是电离气体内正负电荷数相等,称这种气体状态为等离子体态。由于它的独特行为与固态、液态、气态都截然不同,故称之为物质第四态。

等离子体的研究是探索并揭示物质“第四态”等离子体状态下的性质特点和运行规律的一门学科。等离子体的研究主要分成高温和低温等离子体两大方面。

高温等离子体中的粒子温度高达上千万以至上亿度,是为了使粒子有足够的能量相碰撞,达到核聚变反应。低温等离子体中的粒子温度也达上千乃至数万度,可使分子、原子离解、 电离、化合等。可见低温等离子体温度并不低,所谓低温,仅是相对高温等离子体的高温而言。高温等离子体主要应用于能源领域的可控核聚变,低温等离子体则是应用于科学技术和工业的许多领域。高温等离子体的研究已有半个世纪的历程,现正接近聚变点火的目标;而低温等离子体的研究与应用,只是在近年来才显示出强大的生命力,并正处于蓬勃的发展时期。

四大物质形态是什么

科学界公认,固态、液态、气态、等离子态,是物质的四种形态。

解放日报:“人类一小步”,发现物质第五态?

物质有几种形态?在普通人的眼里,三种。固态、液态和气态,比如水,结冰就成固态,零度以上就是液态,加热水沸成气态。

在少数人的眼里,四种。经典物理学认为,物质还有第四态———“等离子态”,当气态的能量高到一定程度而成,比如闪电极光。

在这个人的眼里,是五种。

昨天一条消息轰动:我国台湾省一学者发现物质第五态。

就此,“推翻物理百年传统理论”、“很有机会赢得诺贝尔奖”、“技术领先其他国家至少十年”、“未来教科书将因此改写”……

果真?

这是“人类一小步”?

这事有点怪。

昨天在国内顶级的某理工科著名大学BBS论坛上,“发现物质第五态”这条消息,一度成为科学版讨论热点,学子网友跟帖频频。然而,不久以后,所有跟帖却统统被删了,只剩一个标题。

再问众多专家,也是闻所未闻。

这是怎么回事?难道这条消息有什么问题吗?

为确凿起见,记者直接致电消息中提到的这位发现者,台大物理系副教授赵治宇。办公室电话一拨就通了,接听正是他。只是,一听是记者,连声就道歉:“对不起,我今天下午全排满了,明天吧。”

排满了,全是记者?“对。昨天学校为我开了成果发表会,今天消息登出去,就全都找来了。”电话里,只听这位年仅34岁的台大物理系液晶研究团队负责人对一位来访者说:请坐,请稍等。

抓紧时间,记者上来就直言:早在9年前,不就有人宣称发现物质第五态了吗?

1995年,美国标准技术研究院和美国科罗拉多大学的科学家组成的联合研究小组,首次创造出“玻色—爱因斯坦凝聚态”,被称物质第五态。2001年度的诺贝尔物理学奖,还特地授予了负责这项研究的3位科学家。

“那是从很微观的,量子状态层面上而言的,是以分子、原子、电子这样很微观的尺度来衡量的,是在电子运动中发现的新状态。而我所谓的‘第五态’,是从没有那么细微的层面,从古典物理学的尺度,从大家所熟知的固体、液体、气体等层面来说的。”赵治宇向记者介绍说,他所发现的这个“第五态”,是由细胞膜和水共同形成的,他是在用自行研发的世界第一台“生物环境穿透式电子显微镜”,观察水分子如何渗透进入细胞膜时,发现了一种前所未见的物质形态:原本排列成六角形的各细胞膜分子,之间的联结被穿入其中的水分子破坏,但六角形状却不变,这样,形成的物质既不是液体,因为液体是排列成一定形状,又不是液晶,因为液晶的分子间会有关连性,更不是固体、气体和等离子体,这就是“第五态”,取名“酯膜结构”。

众所周知,固态、气态、液态会相互转换,这“酯膜结构”也能吗?

“能。”赵治宇说,他所观察到的这个“第五态”,室温之中便可存在,当加热到40多摄氏度时,会成为气态,当降低温度时,又会结晶成为固态。

那么,这样一个“第五态”的发现,究竟有何意义?

赵治宇的回答是,一般的电子显微技术,因受真空要求的限制,所观察的细胞切片大多只是染色的干切片或冷冻后的死切片,并非活体细胞,而通过现在所研发的新电子显微技术,可以观测到活体切片的细胞,可以观测到水分子如何进出活体细胞的“第五态”,进而就可以联合生物与生化学家,观察到具有生命的生物动态反应,“这还可用到医疗上,如观察艾滋、SARS等病毒,是如何进出细胞搞破坏的,肺水肿是如何发生的,从而进一步找出对策。”

这么说来,这“第五态”的发现,意义重大?

电话那头,赵治宇连连表示:“这只是人类的一小步,一小步……”

究竟这是第几态?

物质第五态究竟有没有?

中科院物理所软物理实验室的一位负责人,看完赵治宇发表在《物理评论通讯》(PhysicalReviewLetters)杂志12月第2期的原文后,告诉记者说,通观全文,根本没有“物质第五态”之类的字眼,只是忠实记录了一个二维膜熔化的科学试验,观察到了液晶状态里面的一个亚状态,或称特殊状态。这是之前人们的实验没有发现的新东西。

这个状态,是第几态?

这位负责人说,科学界公认,固态、液态、气态、等离子态,是物质的四种形态。相关新闻报道把液晶称为第四态,是错误的。它只是介于固态、液态之间的一种形态,不同的外部条件下,看其偏重哪方面就划分到哪一类。可以说,液晶要么是固态,要么是液态。至于赵治宇发现的,不过是液晶的一个分支,认祖归宗,还是属于固态或液态,怎么可能是什么“第五态”。

物质除了传统公认的四种形态和第五态———“玻色—爱因斯坦凝聚态”,还有什么不被大众所知的形态呢?这位负责人称,发现“第五态”的美国标准技术研究院和美国科罗拉多大学联合研究小组,在2004年初,又宣称发现了费米子凝聚态,即“第六态”。但是,这两种状态目前只在实验室里极低的温度下才能够实现,在地球上的自然界中还没有发现。不过,不排除宇宙间有所存在。

中科院院士、复旦大学物理系教授王迅认为,目前为止,即使在实验室的情况下,“第五态”也只有少数一些原子能够形成,而不是普遍的物质形态,能不能跟前四态并列,并没有统一的认识。他认为,如果有一个国际权威组织能够认证这些说法,并确立为一个概念,倒不失为好办法。

清华大学人文学院科学技术与社会研究所教授刘兵说:“坦率地说,固态、液态、气态只是一种物质形态的分类,我想,不用急着分出个‘第四’、‘第五’、‘第六’来,不如好好研究现有物质形态的性质和物理规律,更有意义。”

凭此“问鼎诺贝尔”?

然而,在昨天,“第五态”消息的轰动一时里,频现这样的字句:“推翻物理百年传统理论”、“很有机会赢得诺贝尔奖”……

何以如此惊天动地?

记者昨天在电话里直接询问赵治宇,没想赵治宇明确表示,从没说过这样的话。“我没说过,我是一个严谨的学者,我不知道是谁写的。”

昨天采访中,亦有不少专家表示:科学欢迎严谨,拒绝炒作。

王迅院士告诉记者:“我没看到论文,不好评判。不过我认为,通过公众媒体发布严肃的学术成果,不是很妥当。《中国科学院院士道德自律准则》明确就有一条:抵制和反对对科研成果进行新闻炒作。”

刘兵教授也表示:“说得偏激点,一般来说,一个重大科研成果的宣布,新闻媒体一介入,往往好事都得变坏事。我始终认为,我们应该做的是耐心等待,等待学术界讨论、判别并认可。”

昨天还有消息称,“这项研究成果刊载于《物理评论通讯》的12月第2期,是华人近年来第一次获得此项殊荣”。

复旦大学物理系一位不愿透露姓名的教授,帮记者在线搜寻到了这篇完整的论文,他告诉:“第一点要澄清的是,《物理评论通讯》虽然的确是美国物理学会出版的权威刊物,但无论国外的华人还是国内科学家,都屡屡有作品发表,因为它每期一般都有三十多篇论文,而且一周一期。比如我,就已经在上面发表过8篇论文,包括这两年。”

那么到底这个发现有什么意义呢?中科院那位软物理实验室的负责人说:“客观地说,目前还无法预测,就像植物学家发现了液晶,当时大家都没料到多少年后,液晶被用来制作液晶电视一样。但是,从现在来看,就这么把这个‘第五态’和诺贝尔奖联系在一起,有点过了。”

中国科学院物理研究所的曹则贤研究员,也在看完《物理评论通讯》那篇论文后向记者表示:“应该说,赵治宇他们的工作做得很漂亮,研究内容也是凝聚态物理中比较重要的课题。但如果说现在就能够获得诺贝尔奖,则可能是媒体的误解。”

人类还有高峰攀

众说纷纭,看来只能拭目以待。

但有一点可以肯定,不管怎样,此次“第五态”的出现,毕竟是又一次人类科学研究的尝试,又一次人类探求未知的举步。

从物质的第一态到第五态到第N态,从空间时间的一维度到四维度到N维度,人类的整个历史发展,体现着这样一条鲜明的脉络:人类探求外部世界的脚步,从来就没有停止过。从宏观上,去登月,去火星,去探索太空;从微观上,从分子到原子到电子,到纳米级,包括这次“第五态”。

这样的探求,也早被富于想象的导演表现在了常具惊人预见性的科幻电影中。早在1997年,美国大片《第五元素》,就展现了一种神奇的“第五元素”,它超越了古希腊神话中的自然界四大元素“风、火、水、土”,拯救地球躲过浩劫。

这部大片,既诉说着人类永恒的爱情,也诉说着人类永恒的探求。

从单一走向多元,又从多元走向和谐共生。复旦教授胡守钧告诉,爱因斯坦就曾说过,自然界是和谐、有序的,人与自然界也天然是一种和谐共生的关系,“和谐共生是人类永恒的哲学,更是人类本能的追求。”

科学发展到今天,已经越发细分。大的课题,多剩一些硬骨头,比如宇宙的起源,比如离子的再细分,短时间难以解决。这也正是为什么现在原创的、开辟大面积全新领域的重大成就缺乏的缘故,时代正在做作业。然而,这并不能阻挡人类探求未知的本能意愿和坚定步伐。

正如同济大学物理系教授张治文所说:“我们在科学上已经探索了几百年,但还是有一些基本的时空问题,困扰了我们千年之久,直到现在也不能搞清楚。”

人类还有高峰攀。

物体存在第四种状态吗

物质存在的第四种状态:等离子体

等离子体又叫做电浆,是由部分电子被剥夺后的原子及原子被电离后产生的正负电子组成的离子化气体状物质,它广泛存在于宇宙中,常被视为是除固态、液态、气态之外,物质存在的第四状态。等离子体是一种很好的导电体,利用经过巧妙设计的磁场可以捕捉、移动和加速等离子体。等离子体物理的发展为材料、能源、信息、环境空间,空间物理,地球物理等科学的进一步发展提新的技术和工艺。

看似“神秘”的等离子体,其实是宇宙中一种常见的物质,在太阳、恒星、闪电、火焰中都存在等离子体,它占了整个宇宙的99。现在人们已经掌握利用电场和磁场来控制等离子体。例如焊工们用高温等离子体焊接金属。

等离子体可分为两种:高温和低温等离子体。低温等离子体是在常温下发生的等离子体(虽然电子的温度很高)。现在低温等离子体体可以被用于氧化、变性等表面处理或者在有机物和无机物上进行沉淀涂层处理。低温等离子体也广泛运用于多种生产领域。例如:等离子电视,婴儿尿布表面防水涂层,增加啤酒瓶阻隔性。更重要的是在电脑芯片中的蚀刻运用,让网络时代成为现实。高温等离子体只有在温度足够高时发生的。太阳和恒星不断地发出这种等离子体,组成了宇宙的99。

等离子体是物质的第四态,即电离了的“气体”,它呈现出高度激发的不稳定态,其中包括离子(具有不同符号和电荷)、电子、原子和分子。其实,人们对等离子体现象并不生疏。在自然界里,炽热烁烁的火焰、光辉夺目的闪电、以及绚烂壮丽的极光等都是等离子体作用的结果。对于整个宇宙来讲,几乎99.9以上的物质都是以等离子体态存在的,如恒星和行星际空间等都是由等离子体组成的。

用人工方法,如核聚变、核裂变、辉光放电及各种放电都可以产生等离子体。分子或原子的内部结构主要由电子和原子核组成。在通常情况下,即上述物质前三种形态,电子与核之间的关系比较固定,即电子以不同的能级存在于核场的周围,其势能或动能不大。由离子、电子以及未电离的中性粒子的集合组成,整体呈中性的物质状态,普通气体温度升高时,气体粒子的热运动加剧,使粒子之间发生强烈碰撞,大量原子或分子中的电子被撞掉,当温度高达百万开到1亿开,所有气体原子全部电离.电离出的自由电子总的负电量与正离子总的正电量相等.这种高度电离的、宏观上呈中性的气体叫等离子体.

等离子体和普通气体性质不同,普通气体由分子构成,分子之间相互作用力是短程力,仅当分子碰撞时,分子之间的相互作用力才有明显效果,理论上用分子运动论描述.在等离子体中,带电粒子之间的库仑力是长程力,库仑力的作用效果远远超过带电粒子可能发生的局部短程碰撞效果,等离子体中的带电粒子运动时,能引起正电荷或负电荷局部集中,产生电场;电荷定向运动引起电流,产生磁场.电场和磁场要影响其他带电粒子的运动,并伴随着极强的热辐射和热传导;等离子体能被磁场约束作回旋运动等.等离子体的这些特性使它区别于普通气体被称为物质的第四态.

在宇宙中,等离子体是物质最主要的正常状态.宇宙研究、宇宙开发、以及卫星、宇航、能源等新技术将随着等离子体的研究而进入新时代。

物质的第4,5态是什么?

人类生存的世界,是一个物质的世界。然而,这个世界还有许多人们肉眼看不到的物质。过去,人们只知道物质有三态,即气态、液态和固态。20世纪中期,科学家确认物质第四态,即“等离子体态”。1995年,美国标准技术研究院和美国科罗拉多大学的科学家组成的联合研究小组,首次创造出物质的第五态,即“玻色一爱因斯坦凝聚态”。去年,这个联合研究小组又宣布,他们创造出物质的第六种形态,即“费米子凝聚态”。

回顾物质前五态

人们通常所见的物质是由分子、原子构成的。处于气态的物质,其分子与分子之间距离较大。而对液态物质来说,构成它们的分子彼此靠得很近;分子一个挨着一个,它的密度要比气态的大得多。至于固态物质,它们的原子一个挨着一个,并相互牵拉,这就是固体比液体硬的原因。而被激发的电离气体电离到一定程度后,便处于导电状态,这种状态的电离气体表现出集体行为,即电离气体中每一带电粒子的运动,都会影响其周围带电粒子,同时也受其他带电粒子的约束。因为电离气体内正负电荷数相等,所以电离气体整体表现出电中性,这种气体状态被称为等离子体态。由于它的独特行为与固态、液态、气态都截然不同,故称为物质第四态。

所谓“玻色一爱因斯坦凝聚态”,是科学巨匠爱因斯坦在70 年前预言的一种新物态。为了揭示这个有趣的物理现象,世界科学家为此付出了几十年的努力。 1995年,美国科学家维曼、康奈尔和德国科学家克特勒首先从实验上证实了这个新物态的存在。为此,2001年度诺贝尔物理学奖授予了这3位科学家,以表彰他们在实现“玻色一爱因斯坦凝聚态”研究中作出的突出责献。

“玻色一爱因斯坦凝聚态” 是物质的一种奇特的状态,处于这种状态的大量原子的行为像单个粒子一样。这里的“凝聚”与日常生活中的凝聚不同,它表示原来不同状态的原子突然“凝聚” 到同一状态,要达到该状态,一方面需要物质达到极低的温度,另一方面还要求原子体系处于气态。华裔物理学家朱棣文,曾因研究出激光冷却和磁阱技术这一有效的制冷方法,而与另两位科学家分享了1997年的诺贝尔物理学奖。“玻色一爱因斯坦凝聚态”所具有的奇特性质,不仅对基础研究有重要意义,在芯片技术、精密测量和纳米技术等领域,也都有很好的应用前景。

何为“费米子凝聚态”

根据“费米子凝聚态”研究小组负责人德博拉金的介绍, “费米子凝聚态”与“玻色一爱因斯坦凝聚态”都是物质在量子状态下的形态,但处于“费米子凝聚态”的物质不是超导体。

量子力学认为,粒子按其在高密度或低温度时集体行为可以分成两大类:一类是费米子,得名于意大利物理学家费米;另一类是玻色子,得名于印度物理学家玻色。这两类粒子特性的区别,在极低温时表现得最为明显:玻色子全部聚集在同一量子态上,费米子则与之相反,更像是“个人主义者”,各自占据着不同的量子态。“玻色一爱因斯坦凝聚态”物质由玻色子构成,其行为像一个大超级原子,而“费米子凝聚态”物质采用的是费米子。当物质冷却时,费米子逐渐占据最低能态,但它们处在不同的能态上,就像人群涌向一段狭窄的楼梯,这种状态称作“费米子凝聚态”。

“费米子凝聚态”是如何创造出来的?

科学家们在1995年已成功地通过将具有玻色子特征的原子气体冷却至低温,获得所谓的 “玻色一爱因斯坦凝聚态”。由于没有任何2个费米子能拥有相同的量子态,费米子的凝聚一直被认为不可能实现。去年,物理学家找到了一个克服以上障碍的方法,他们将费米子成对转变成玻色子。这一研究为创造“费米子凝聚态”铺平了道路。

德博拉金领导的联合研究小组,将具有费米子特征的钾原子气体冷却到绝对零度以上的十亿分之一度,此时钾原子停止运动。绝对零度相当于一273.15。试验中,科学家用激光方法远远达不到费米子凝聚所要求的温度。为此,还要把原子放到“磁杯”中进行蒸发冷却。他们将气体约束在真空小室中,并采用磁场和激光使钾原子配对,成功地创造出“费米子凝聚态”。

费米子与超导体有哪些不同?

首先,费米冷凝体所使用的原子比电子重得多,其次是原子对之间吸引力比超导体中电子对的吸引力强得多,在同等密度下,如果使超导体电子对的吸引力达到费米体中原子对的程度,制造出常温下的超导体立即可以实现。超冷气体中形成费米体为研究超导的机理提供了一个崭新的物质工具。当然,现在的技术并不能使所有费米子都可以发生费米冷凝,而且所获得的冷凝体还相当脆弱——比玻璃还要脆!但这只是技术问题。

第六态催生下一代超导体

这项成果在超导技术上的应用前景非常广阔,有助于下一代超导体的诞生,而新一代超导体技术可在电力工程、电能输送、电动机与发电机的制造、磁流体发电、超导磁悬浮列车、超导计算机、超导电子器件、地球物理勘探、地质学、生物磁学、高能加速器与高能物理研究等众多领域和学科中大显身手

一般的,物质有四种状态,气,固,液,第四种是什么

等离子态

等离子态又叫做物质的第四态,它是气体,不过其原子失去电子形成自由电子和

正离子,因为两者的量相等因此又叫做等离子态,它可导电而且受磁场影响,热气体中,因为原子高速碰撞而造成电离现象,形成等离子态,太阳内部的气体就是其中一个例子.低温气体,负电子和正离子会再结合,因此不会形成等离子态.在萤光灯内,存在低压汞蒸汽及一些惰性气体,在高电压下,电子急剧加速,碰撞而造成更多电子及正离子,形成等离子态,过程中汞原子被激发至激发态,由激发态跃至基态,发出电磁波,主要为紫外辐射,紫外辐射投射到管壁的荧光粉时,再转为可见光.

为了克服氢核间的强劲排斥力而进行核熔合作用,两氢核必须高速碰撞,而所需温度高达千万度摄氏,太阳内依kao)筛胶洗颂跫但如要发展受「控制的热核熔合」作用,没有容器可忍受此高温而不熔解,利用磁场将等离子体困在磁场内,使它在高温下进行核熔合,这方法仍未成功,仍有待进一步研究.

我们知道,把冰加热到一定程度,它就会变成液态的水,如果继续升高温度,液态的水就会变成气态,如果继续升高温度到几千度以上,气体的原子就会抛掉身上的电子,发生气体的电离化现象,物理学家把电离化的气体就叫做等离子态。

在茫茫无际的宇宙空间里,等离子态是一种普遍存在的状态。宇宙中大部分发光的星球内部温度和压力都很高,这些星球内部的物质差不多都处于等离子态。只有那些昏暗的行星和分散的星际物质里才可以找到固态、液态和气态的物质。

就在我们周围,也经常看到等离子态的物质。在日光灯和霓虹灯的灯管里,在眩目的白炽电弧里,都能找到它的踪迹。另外,在地球周围的电离层里,在美丽的极光、大气中的闪光放电和流星的尾巴里,也能找到奇妙的等离子态。

除了等离子态外,科学家还发现了“超固态”和“中子态”。宇宙中存在一颗白矮星,它的密度很大,大约是水的3600万到几亿倍。一立方厘米白矮星上的物质就有100200公斤重,这是怎么回事呢?

原来,普通物质内部的原子与原子之间有很大的空隙,但是在白矮星里面,压力和温度都很大,在几百万个大气压的压力下,不但原子之间的空隙被压缩了,就是原子外围的电子层也被压缩了。所有的原子核和原子都紧紧地挤在一起,物质里面不再有什么空隙,因此物质就特别重,这样的物质就是超固态。科学家推测,不但白矮星内部充满了超固态物质,在地球中心一定也存在着超固态物质。

假如在超固态物质上再加上巨大的压力,原子核只好被迫解散,从里面放出质子和中子。放出的质子在极大的压力下会跟电子结合成中子。这样一来,物质的结构就发生了根本性的改变,原来是原子核和电子,现在都变成了中子。这样的状态就叫做“中子态”。

中子态物质的密度大得更是吓人,它比超固态物质还要大10多万倍。一个火柴盒那么大的中子态物质,就有30亿吨重,要用96000台重型火车头才能拉动它。

宏观物质在一定的压力下随温度升高由固态变成液态,再变为气态(有的直接变成气态)。当温度继续升高,气态分子热运动加剧。当温度足够高时,分子中的原子由于获得了足够大的动能,便开始彼此分离。分子受热时分裂成原子状态的过程称为离解。若进一步提高温度,原子的外层电子会摆脱原子核的束缚成为自由电子。失去电子的原子变成带电的离子,这个过程称电离。发生电离(无论是部分电离还是完全电离)的气体称之为等离子体(或等离子态)。等离子体是由带正、负电荷的粒子组成的气体。由于正负电荷总数相等,故等离子体的净电荷等于零。

等离子态与固、液、气三态相比无论在组成上还是在性质上均有本质区别。首先,气体通常是不导电的,等离子体则是一种导电流体。其次,组成粒子间的作用力不同。气体分子间不存在净的电磁力,而等离子中的带电粒子间存在库仑力,并由此导致带电粒子群的种种特有的集体运动。另外,作为一个带电粒子系,等离子体的运动行为明显的受到电磁场的影响和约束。

根据离子温度与电子温度是否达到热平衡,可把等离子体分为平衡等离子体和非平衡等离子体。在平衡等离子体中,各种粒子的温度几乎相等。在非平衡等离子体中电子温度与离子温度相差很大。

通常把电离度小于0.1的气体称弱电离气体,也称低温等离子体。电离度大于0.1的称为强电离等离子体,也称高温等离子体。

等离子体在工业上的应用具有十分广阔的前景。高温等离子体的重要应用是受控核聚变。低温等离子体用于切割、焊接和喷涂以及制造各种新型的电光源与显示器等。

等离子体在自然界中是普遍存在的。例如,太阳、恒星、银河系、河外星系中的大部分星际物质都处于等离子体状态。地球上南北极有时发生的五颜六色的极光、夏日雷雨时出现的闪电和绚丽多彩的霓虹灯、日光灯等都与等离子体现象密切有关。